Life Technologies Buys GeneART

Life Technologies today bought 58% of synthetic DNA provider GeneART, with a public tender planned for shares outstanding (Yahoo Finance, GeneART Press Release).  Previously, before changing its name, Invitrogen entered into a strategic agreement to buy the exclusive worldwide rights to distribute Blue Heron Biotechnologies gene synthesis services.

What should we make of this?

First, Life is led by Gregory Lucier, who used to be way high up at GE and is a former protege of Jack Welch.  In my observation, and in my experience, Life is trying to the be the GE of biology.  What does that mean?  GE is obviously a conglomerate, and it operates not so much as a maker and seller of things but as a finance operation that seeks growth through return on capital.  As such, GE buys other companies aggressively -- this is, vastly oversimplified, the Jack Welch strategy.  Life is operating the same way.  The company is aggressively acquiring biotech companies of all sizes. The web was full of rumors earlier in 2010 that GE, seeing something it liked and a familiar strategy, was trying to buy Life Tech.  Who knows -- that may be real and may still happen.  It would be another interesting indication of a certain kind of maturity in the market for biological technologies.

Second, Life obviously sells lots of cloning reagents -- a market that is threatened by synthesis -- so the move could be somewhat defensive in nature.  Life is getting reputation, market share, and expertise in an area that they do not yet dominate.

Third, while GeneART is big, they are a European shop paying German wages to a bunch of people running around with plates and pipetters.  GeneART gets some cash and a big marketing arm, and Life gets ... hummm ... an operation that may have difficulty competing with Chinese labor (Genescript) and automation (Blue Heron).  Presumably, Life looked at the balance sheet and the marketing forecasts and decided the deal makes sense.  But it might be a complex calculation involving not just return on capital, but also access to IP, expertise, and factors that nobody outside Life can do more than guess at, like balancing sales of cloning reagents against sales of synthetic genes.

Now, what might be the implications for the synthetic biology community?  Probably not much.  Prices for synthetic DNA continue to fall.  The $.39 per base price established last autumn as a "special" is now, no surprise, the industry standard.  We will probably see additional consolidation and shifting around as margins get squeezed.  The industry is expecting prices to be at $.05 to $.15 per base within 5 years.  Though even within the same conversation you might hear $.10-$.25 per base, thereby managing consumer expectations, which makes me wonder if people are starting to quail a bit at the exponential and its implications for their business.  You will still have the option to pay more for rush jobs or for genes that are tricky to synthesize.

As I have observed previously (most recently in Nature Biotechnology, here), the maximum profit margin on synthetic genes is evaporating exponentially.  That is not hyperbole, but rather a quantitative observation based on market prices over more than ten years; it is data.  That said, even as prices fall it will still be possible for some companies to increase their revenues as competitors leave the market or go out of business.  But I would be surprised if the market dynamics that enabled Intel to exploit Moore's Law for many decades reemerged in synthetic genes.  Intel knew it could ship exponentially more transistors every quarter -- which meant it could rapidly grow even in the face of falling prices -- but I do not have any evidence that the total market for synthetic genes is expanding much faster than the price is falling.  Conversations with industry executives lead me to believe the total dollar value in the market is continuing to rise, if somewhat slowly.  The rate of increase is hard to pin down, however, given the hiccup that was 2009.  This year's volume and revenues should be bigger, but it isn't clear that one should attribute this to more than the broader economic recovery.

All in all, this seems like business as usual for an industry that is experiencing a rapid transition to commodity status while simultaneously suffering from globalization and lowered barriers to entry.  It probably isn't so different in overall impact from the demise of Codon Devices.  This is just another step towards maturity in an area that will have much more impact on our lives in the future than it has thus far.

"National Strategy for Countering Biological Threats"

I recently had cause to re-read the National Strategy for Countering Biological Threats (Full PDF), released last fall by the National Security Council and signed by the President. I think there is a lot to like, and it demonstrates a welcome change in the mindset I encounter in Washington DC.

When the document came out, there was just a little bit of coverage in the press. Notably, Wired's Threat Level, which usually does a commendable job on security issues, gave the document a haphazard swipe, asserting that "Obama's Biodefense Strategy is a Lot Like Bush's".  As described in that post, various commentators were unhappy with the language that Under Secretary of State Ellen Tauscher used when announcing the Strategy at a BWC meeting in Geneva. According to Threat Level, "Sources tell this reporter that the National Security Council had some Bush administration holdovers in charge of editing the National Strategy and preparing Ms. Tauscher's script, and these individuals basically bulldozed the final draft through Defense and State officials with very little interagency input and with a very short suspense." Threat Level also asserts that "Most are disappointed in the language, which doesn't appear to be significantly different than the previous administration." It is unclear who "Most" are.

In contrast to all of this, in my view the Strategy is a clear departure from the muddled thinking that dominated earlier discussions. By muddled, I mean security discussions and policy that, paraphrasing just a little, went like this: "Biology Bad! Hacking Bad! Must Contain!" 

The new National Strategy document takes a very different line. Sources tell this reporter, if you will, that the document resulted from a careful review that involved multiple agencies, over many months, with an aim to develop the future biosecurity strategy of the United States in a realistic context of rapidly spreading infectious diseases and international technological proliferation driven by economic and technical needs. To wit, here are the first two paragraphs from the first page (emphasis added, of course):

We are experiencing an unparalleled period of advancement and innovation in the life sciences globally that continues to transform our way of life. Whether augmenting our ability to provide health care and protect the environment, or expanding our capacity for energy and agricultural production towards global sustainability, continued research and development in the life sciences is essential to a brighter future for all people.

The beneficial nature of life science research is reflected in the widespread manner in which it occurs. From cutting-edge academic institutes, to industrial research centers, to private laboratories in base­ments and garages, progress is increasingly driven by innovation and open access to the insights and materials needed to advance individual initiatives.

Recall that this document carries the signature of the President of the United States.  I'll pause to let that sink in for a moment.

And now to drive home the point: the new Strategy for Countering Biological Threats explicitly points to garage biotech innovation and open access as crucial components of our physical and economic security. I will note that this is a definite change in perspective, and one that has not fully permeated all levels of the Federal bureaucracy and contractor-aucracy. Recently, during a conversation about locked doors, buddy systems, security cameras, and armed guards, I found myself reminding a room full of biosecurity professionals of the phrase emphasized above. I also found myself reminding them -- with sincere apologies to all who might take offense -- that not all the brains, not all the money, and not all the ideas in the United States are found within Beltway. Fortunately, the assembled great minds took this as intended and some laughter ensued, because they realized this was the point of including garage labs in the National Strategy, even if not everyone is comfortable with it. And there are definitely very influential people who are not comfortable with it. But, hey, the President signed it (forgive me, did I mention that part already?), so everyone is on board, right?

Anyway, I think the new National Strategy is a big step forward in that it also acknowledges that improving public health infrastructure and countering infectious diseases are explicitly part of countering artificial threats. Additionally, the Strategy is clear on the need to establish networks that both promulgate behavioral norms and that help disseminate information. And the new document clearly recognizes that these are international challenges (p.3):

Our Strategy is targeted to reduce biological threats by: (1) improving global access to the life sciences to combat infectious disease regardless of its cause; (2) establishing and reinforcing norms against the misuse of the life sciences; and (3) instituting a suite of coordinated activities that collectively will help influence, identify, inhibit, and/or interdict those who seek to misuse the life sciences.

...This Strategy reflects the fact that the challenges presented by biological threats cannot be addressed by the Federal Government alone, and that planning and participation must include the full range of domestic and international partners.

Norms, open biology, better technology, better public health infrastructure, and better intelligence: all are themes I have been pushing for a decade now. So, 'nuff said on those points, I suppose.

Implementation is, of course, another matter entirely. The Strategy leaves much up to federal, state, and local agencies, not all of whom have the funding, expertise, or inclination to follow along. I don't have much to say about that part of the Strategy, for now. But I am definitely not disappointed with the rest of it. It is, you might say, the least bad thing I have read out of DC in a long time.

Big Gene Patent (Busting) News???

Well now, isn't this an interesting development.  As covered by many news outlets (NYT, Wired, Genomeweb), US District Court Judge Robert Sweet has invalidated several US patents, sometimes referred to as the "BRCA1/2 patents", held by the University of Utah and Myriad Genetics.  From Judge Sweet's decision: "Products of nature do not constitute patentable subject matter absent achange that results in the creation of a fundamentally new product."  Judge Sweet's decision is here (PDF) via Genomics Law Report.  Here is the ACLU's take.

Here is a brief summary of what follows: The ruling is remarkable.  Various commentators and reporters remark upon it.  They get confused.  I try to clarify.  Then we get to a truly revolutionary part of the decision: it's about science!  And a little bit about law.  Finally: so what if a few patents are invalidated?
 

Didn't See That Coming.  But I Can't Complain.

Last month, I noted that I was skeptical that the ACLU and other plaintiffs would be so successful in one go.  So I am surprised, but I am certainly not disappointed.  But I am not surprised, while being somewhat disappointed, that the coverage of the decision is so confused and confusing.  This confusion arises, I suspect, because the wording of Judge Sweet's decision is not entirely straightforward in places, and this has led to analyses that are insufficiently careful.  More on these points below.

DISCLAIMER: Please recall in what follows that I am but a humble physicist by training (oh yes, yes, we're all very humble), not a lawyer.  But I have written some stuff about patents on genes, and at least a few people (some of whom are IP law lawyers) think my analysis doesn't suck a lot.

First, over at Genomics Law Report (GLR), John Conley and Dan Vorhaus have a great analysis with a nice title: "Pigs Fly: Federal Court Invalidates Myriad's Patent Claims".  I won't bother to repeat their discussion.  If you are interested in this issue, please read that post as well as Dan Vorhaus' initial post analyzing the decision.  In particular, the reader might want to attend closely Vorhaus and Conley's observations about the potential for appeals, the likelihood of success in that endeavor, and the applicability of the ruling in other jurisdictions.

The short summary of what's transpired so far in the case is that Judge Sweet has invalidated a small number of claims, in a summary judgement ruling that so far applies only in the Southern District of New York.  Assertions that this is the end of the world for companies that hold gene patents are rather overblown.

There's Too Much Confusion, But Here is Some Relief

But now onto some of the confusing bits alluded to above.  The confusion starts, surprisingly, at GLR.  Here are Conely and Vorhaus:  "In the broader policy debate surrounding gene and biotechnology patents, however, this decision is the latest, unmistakable shot across the bow of gene patent holders, particularly those such as Myriad Genetics that have developed businesses around patent-protected genetic tests supported by exclusive rights in underlying gene patents."  Hummm...  Maybe not so much, actually.  Let me get straight to the point: there is a rather substantial difference between a "gene patent" that claims naturally occurring sequences and one that claims sequences that are not natural. 

Here is one way to think about the issues under discussion: in my one hand, I have a piece of isolated DNA that is identical in sequence to one in your body.  It is the same genetic sequence, so it carries the same information.  Indeed, for it to be useful in a test tube for the purposes of diagnosis, it must have both the same information content and the same function as the sequence in your body.  In fact, it only works as a diagnostic tool because it is the same as what is in your body.  As I noted in my earlier post, this is sort of the opposite of invention, and I have never understood why natural genes can be patented.  (Note: Judge Sweet hits this point quite squarely, but not until p.124 of his ruling.)  In my other hand, I have a piece of isolated DNA that is solely the result of human manipulation -- "human ingenuity" -- consisting of a sequence that does not exist in nature.  Both pieces of DNA are isolated, but they derive from very different sources, and are derived by very different means. Unfortunately, everybody discussing the present decision, including Judge Sweet in the early pages of his decision, seems to be a tad careless about the distinction, which leads many people down a rabbit hole.  (There is an extended discussion of the definition of "isolated DNA" and of the BRCA1/2 genes on p.90-92.)

Here is where it starts: Judge Sweet sets up his decision in the first couple of pages focusing specifically on the BRCA1/2 genes, and slightly more generally on isolated human genes: "Are isolated human genes and the comparison of their sequences patentable?" (p.2)  He continues: "Two complicated areas of science and law are involved: molecular biology and patent law.  The task is to seek the governing principles in each and to determine the essential elements of the claimed biological compositions and processes and their relationships to the laws of nature."

This sounds great.  Judge Sweet is clearly referring specifically to certain human gene sequences named in the patents in question.  Alas, on the next page he switches his language to address the specific assertions of the plaintiffs that ""isolated DNA" containing human BRCA1/2 sequences" are not patentable.  The basic contention here is that because the isolated DNA as described in the patents does the same thing inside the body as outside the body -- it is an information storage medium -- there is no difference between the two forms of DNA and therefore the isolated DNA in question cannot be patented.  Judge Sweet concludes (p.4):

DNA represents the physical embodiment of biological information, distinct in its essential characteristics from any other chemical found in nature. It is concluded that DNA's existence in an 'isolated' form alters neither this fundamental quality as it exists in the body not the information it encodes.  Therefore, the patents at issue directed to "isolated DNA" containing sequences found in nature are unsustainable as a matter of law and are deemed unpatentable subject matter.

The judge thereby switches within a couple of paragraphs very seamlessly from language referring only to human genes to language referring seemingly to all "isolated DNA".  It takes another 100 pages to get to a true clarification, and I'll bet very few people have read that far, or followed all the byways and cross-references (p.100): "...The issue presented by the instant motions with respect to the composition claims is whether or not claims directed to isolated DNA containing naturally-occurring human sequences [emph added] fall within the products nature exception.  ...It is concluded that the composition claims-in-suit are excepted."

In other words, Judge Sweet very specifically ruled that the claims on isolated DNA containing naturally occurring sequences are not valid.  Even more specifically, the ruling only applies to the motion in question by the plaintiffs, namely to invalidate the patents on BRCA1/2 held by Myriad et al.  Judge Sweet pointedly cites Diamond vs. Chakrabarty (p.109) -- a case that affirmed the patentability of "genetically engineered" organisms -- in limiting his ruling to the patentability of naturally occurring genes.  The ruling has no applicability outside that subject matter, and therefore has little applicability to, for example, much of anything that might come out of synthetic biology (unless you are talking about a synthetic DNA version of a naturally occurring gene).  Nor, for that matter, does the ruling have any say about any bit of DNA altered to be different from a natural sequence.  Which means that the ruling has very little to do with most patents on DNA, and therefore has very little to do with most of the industry surrounding those patents -- more on this below.

(Side note, as I read through the decision: Myriad's lawyers didn't do themselves any favors by making generally unpersuasive assertions aimed as broadside attacks against the plaintiffs' arguments.  As noted in my previous post on this case "Whither Genome Patents?", the defendants' assertions that patents serve as necessary incentives for scientific research are complete bunk.  Defense attorney Brian Poissant previously argued that "women would not even know they had BRCA gene if it weren't discovered" under a system that incentivizes patents.  I say again, as calmly as I can, bull pucky.  For example, see the publicly funded Human Genome Project.  See also the fact that BRCA2 was sequenced first in academic labs rather than by Myriad, who somehow managed to patent it anyway.  See also the many  BRCA1/2 assays independently developed in academia, the use of which Myriad repeatedly quashed through cease-and-desist letters, as recounted in detail in the decision.  But here is Judge Sweet himself (p.76): "According to Myriad, its policy and practice has been and still is to allow scientists to conduct research studies on BRCA 1 and BRCA 2 freely, the result of which has been the publication of [over 8600 papers] representing the work of over 18,000 scientists."  (It wasn't clear to me whether Myriad's legal team itself provided these numbers -- but if they did: bad legal tactics, fellas.)  In other words, 18,000 scientists have managed to produce a substantial body of work without any promise whatsoever of remuneration based on a patent for BRCA1/2.  Unless, of course, you count keeping your job through the promise of not being sued by Myriad.)  

It's Science!  And Science Always Wins -- Eventually, But May be Delayed By Appeals.

There is another very interesting angle to Judge Sweet's decision.  Andrew Pollack, writing in the New York Times, suggests that the most revolutionary part of the decision is where Judge Sweet recognizes that DNA carries information.  Pollack quotes Rebecca Eisenberg, a law professor at the University of Michigan: "There isn't a whole lot of doctrinal support" for considering DNA as information rather than as a chemical.  That, for me, is a truly eye opening perspective.  Not because I didn't know about it before -- unfortunately, that view is all too prevalent among IP lawyers -- but rather because it is being defended and suggested as a possible grounds for appeal.  True, it may be precedent, but that does not mean it is good precedent.

Here's the thing: There may not be much "doctrinal support" for considering DNA as information, but there is a rather overwhelming amount of scientific and technical support for considering DNA as information rather than as a chemical, say starting with the vast majority of molecular biology and biochemistry papers published in Science, Nature, Cell, PNAS, and any other relevant journal you can think of.  For all of the last six decades, no less.  Oh, and then all those silly textbooks.  The genetics and molecular biology ones, obviously; not the law textbooks.

Judge Sweet, in my humble opinion, already smacked this one out of the park on p.4: "The facts relating to molecular biology are fundamental to the patents at issue and to the conclusions reached.  Consequently, in the findings which follow, the discussion of molecular biology precedes the facts concerning the development, application, and description of the patents."  (Whoa there!  Science and reason trump the law of man!  Or science and reason trump the law of lawyers?  Damn, now that is a novel legal theory.  And a welcome one.  Don't tell Sen. James Inhofe.) 

Unfortunately, Pollack misses this angle, and promulgates further the confusion that Judge Sweet's ruling spells doom for the biotech industry: "Some biotechnology investors and executives say that lack of patent protection for DNA could diminish investment in the field and remove incentives for companies to develop tests."  Never mind that, as described above, Judge Sweet's ruling applies only to patents on naturally occurring genes, which should ameliorate the concerns of most of the "some biotechnology investors and executives".  It is nonetheless true that diagnostics companies that rely on patents claiming naturally occurring sequences may have to reevaluate their business plans.  (For instance, they may want to be especially careful in issuing cease-and-desist letters, lest the ACLU and company get busy again.)  And it may be true that this small fraction of biotech businesses may have difficulty raising capital -- but time will tell.  If it turns out that development of new diagnostic assays lags as a result of more patents on human genes being invalidated, then we will have something real to talk about.  We might consider developing public policy around alternate incentives.  Until there is a demonstrated concern, however, it isn't clear to me that we should be so concerned about the fate of private investors who gambled on patents whose validity has long been questioned.

What Is The Real Impact Going To Be? 

To reiterate the numbers from my earlier post: of the roughtly 2% of US GDP that is derived from biotech, at a rough guess I would put only 1% of the total (so .01% of US GDP) in the molecular diagnostics category that depends explicitly on excluding other uses of patented human genes.  A few billion dollars a year, in other words, might be at risk.  But somebody is going to do the tests, and Judge Sweet's decision lists a variety of tests that cost about 1/3 of Myriad's; that is, before Myriad shut them down with cease-and-desist letters.  If you eliminate those patents, we might have to come up with some other way to incentivize the development and testing of assays.  Prizes come to mind as a fine thing to try.  They work.  Academics and garagistas will be happy to compete for those prizes, I am sure.

But the rest of the biotech industry shouldn't be concerned about this ruling, frankly.  They might even celebrate the fact that they now have access, potentially, to a whole bunch more genes that are naturally occurring.  Not just in humans, mind you, but any organism.  This opens up a rather substantial toolbox for anybody interested in using biological technologies derived from viruses, bacteria, plants, etc.  If it holds up over the long run, Judge Sweet's decision should accelerate innovation.  That is definitely a good thing.

Catching my breath

Back in Seattle now, after hectic trips to New York and Washington DC.  Many thanks to NYC Resistor and the New York DIYBio group for hosting one of my NYC book talks, and to James Jorasch and Science House for hosting the other (here is the blog coverage of the latter).  And a big shout out to Dan Grushkin for getting everything rolling.

The last day of the Washington DC trip was a little strange.  I had lunch across the street from the White House, then hopped a plane and caught Balkan Beat Box here in Seattle, where the woman beside me was doing some funky Balkan-Capoeira fusion dance thing.  (Had to give her plenty of elbow room, lest I suffer a concussion.)

My head is still spinning.

Chinese Real Estate Bubble Confusion (Or "On The Frailty of Selective Information")

(Updated to include the overall local-national GDP discrepancy of at least ~2.5%.)

We often see headlines loudly proclaiming certain things to be true about China.  They are taking over!  No, wait, they are collapsing!  It's raining!  No, it's a drought!  How is one supposed to make sense of any of this?

One small part of the answer is that even the Chinese don't have a great idea of what is going on.  As a result, last Thursday (March 11), based on Chinese government data, the Financial Times and the Wall Street Journal carried stories on the state of the Chinese real-estate market that came to completely opposite conclusions.  Here's the WSJ headline: "China's Real-Estate Boom Appears to Cool."  And here is the FT: "Fears grow over China property bubble despite efforts at cooling."  Both stories cite identical statistics about price increases over the last year, though the WSJ leans on reduced sales volumes reported by the Government and by a consultancy that tracks sales.  (Imagine this, if you can -- a reduction from 50% to 37% in the annual increase in sales is seen as a "cooling" of the market!)

The main problem with this reporting is that there is very little reason to believe the underlying data is accurate.  See, for example, this story from Xinhua a few weeks ago: "China statistics chief admits errors in property data calculation".

Dueto staff shortages, housing price data mainly stemmed from reports by real estate developers, said [Ma Jiantang, director of the National Bureau of Statistics (NBS)], who cited Beijing as an example where only one or two officials were responsible for collecting data from hundreds of real estate companies.

"Under the circumstance, we have to rely on the employees of property companies after giving them short-term training," Ma said. "And some of the employees lack professionalism and a sense of responsibility."

And of course the real-estate developers have every reason to want the government (and the public) to conclude that prices are not out of control.  Beijing is attempting to put the breaks on a housing bubble, but the developers are making out like bandits.  There does not appear to by any reason for them to report accurately on pricing and volume.

Beyond the real estate market, even assessing the overall economic activity of the country is somewhat opaque for Beijing.  See this recent story from Xinhua, "China mulls unified GDP calculation":

China's top economic planning body has confirmed that China is considering bring local GDP under unified calculation in an effort to prevent local officials from cooking economic growth figures for political benefits.

...In the first half of 2009, the sum of provincial GDP figures was 1.4 trillion yuan more than the national figure, calculated by the NBS independently. Almost half of the provincial governments reported a double-digit GDP growth whereas the national growth figure was only 7.1 percent.

Leaving aside the cumulative difference in growth rate, that 1.4 trillion yuan imbalance amounts to an absolute yearly discrepancy of ~2.5% just for the first six months of 2009, which would severely complicate sorting out domestic economic policy.  It would also make strategic judgments by other countries rather problematic.
 
For what it is worth, my man on the ground is an architect who has been working in China for more than a decade now, building everything from government offices, to residential towers, to subdivisions, and beyond.  His latest big project under construction is a kilometer-long building containing housing, offices, performing arts spaces, sports fields along the "ridgeline" on top, and an interior train running the length of the entire structure.  It sounds like a fantasy land.  Perhaps it is.

In other news, the architect reports his firm just completely sold out a mid-range 40 story condo tower to individual purchasers in two days, as fast as the paperwork could get signed.  When asked if he thought this indicated a healthy market and real economy: "No way!" 

Shame On You, Portland!

What Happened to March?  I got on a plane this morning headed for New York, but somehow arrived on April 1st.  It's the only explanation for this:

Portland hurts Tibetans
(China Daily)
Updated: 2010-03-11 07:51

While many in the international community are watching with anxiety to see if Washington moves to repair its ties with Beijing, a reckless decision by an American city is rubbing salt into the unhealed wound of the world's most important bilateral relations.

The city of Portland, Oregon, proclaimed Wednesday, March 10, their "Tibet Awareness Day" despite strong opposition from the Chinese government.

While most people and most countries in the world recognize Tibet as part of China, the decision by the American city interferes in China's internal affairs and is an open defiance of China's state sovereignty.

It could have an adverse effect on Sino-US relations, which has yet to recover from major deterioration following Washington's $6.4-billion arms sale to Taiwan and US President Barack Obama's meeting with the Dalai Lama.

The designation of the "Tibet Awareness Day" was apparently orchestrated by the Dalai Lama clique, which has been engaged in activities aimed to separate China and undermine Tibet's stability in the guise of religion.

It is still beyond our belief that politicians in Portland have chosen to celebrate a handful of fanatics trumpeting Tibet independence while turning a blind eye to either history or the status quo of present-day Tibet. History has told us that Tibet has always been a part of China, and there is ample evidence proving the fact that Tibetan people now enjoy a much better life and enjoy the full freedom of religion.

Americans are well-known for putting individual freedom above everything. While the city of Portland entertains a few Tibet separatists, has it ever occurred to its decision-makers that their move are infringing on the interest of 2.8-million Tibetans here in China?

DIY Cleanroom

Gizmodo and Make are both pointing to Bill Morris's DIY Cleanroom.  Compare it to the hoods shown in my post on Garage Biology in Silicon Valley a couple of days ago.

Morris reports that his goal is a Class 10,000 hood, a specification that is slightly more involved than I had remembered.

In any event, Morris' hood would be of great use to those doing cell culture at home.  I suspect you are going to want a better filter, for nabbing smaller contaminants, maybe higher airflow, and perhaps some way to hack up a laminar-flow set-up.

Cool.

Garage Biology in Silicon Valley

A couple of weeks ago I made a whirlwind trip to San Francisco that turned out to be all about garage biology.  I started off with a talk to the California Assembly Select Committee on Biotechnology.  Here are my slides (Carlson_CA_Assembly_February_2010.pdf), which focus on the role of small business and garage hackers in creating innovation in the Bioeconomy, and here is the agenda (PDF).  See my recent post on "Micro-Brewing the Bioeconomy" for the details of craft brewing as an example of distributed biological manufacturing.  I also did an event at the GBN for the book, and I'll post a link to the recording when it goes live.

I spent most of one Saturday hanging out at a garage biology lab in Silicon Valley.  When I walked in the door, I was impressed by the sophistication of the set-up.  The main project is screening for anti-cancer compounds (though it wasn't clear to me whether this meant small molecules or biologics), and the people involved have skillzzz and an accumulation of used/surplus equipment to accomplish whatever they want; two clean/cell-culture hoods, two biorobots (one of which is being reverse engineered), incubators, plate readers, and all the other doodads you might need.  They aren't messing around.  I didn't get into the details of the project, but the combination of equipment, pedigree, and short conversations with the participants told me all I needed to know.  That doesn't mean they will be successful, of course, just that I believe they are yet another example of what can be attempted in a garage.  This sort of effort is where new jobs, new economic growth, and, most importantly, desperately needed new technologies come from.  Garage innovation is at the heart of the way Silicon Valley works, and it is envied around the world.

IMG_0173.jpg
IMG_0174.jpgI continue to get push back from people who assert that "it is really too hard" to hack biology in a garage, or too expensive, or that garage labs just can't be up to snuff.  This sort of dissent usually comes out of National Labs, Ivy League professors, or denizens of the beltway.  All I can say to this is -- Doodz, you need to get out more.

So why am I not telling you the who and the where for the photos above?  Because, like many garage biology hackers, they are a little skittish given the way the Uncle Sam has been off his rocker for the last few years when it comes to mis-perceived biothreats (Shoot first, Google later).  The people who built the lab pictured above are pursuing a project that is technically well beyond anything discussed on the DIYBio list, and while they may be watching the DIYBio conversation they don't advertise what they are up to.  It would be better for all of us if we could rest assured that conversations about this sort of work could proceed in the open without guys showing up in biohazard suits with weapons drawn -- Youtube, at the 00:00:48 mark.  Words fail to describe this video.  Or, rather, I have plenty of choice words to describe the quality of the investigation and planning that went into an armed assault on the residence of an art professor whose many previous public shows and events included biological technologies including hacked bacteria -- and indeed I have shared those words with the appropriate individuals in DC, and will do so again -- but it won't do my blood pressure any good to go further down that road here.

While the innocuous art professor may be back at work, and while some may view this as water under the bridge, it is not my impression that Federal law enforcement officials truly understand the impact of their behavior.  (Here, I will try again: Dear Feds, You are making us less safe.)  The response to errant "enforcement"efforts (or "career enhancement", depending on your perspective) is exactly what you would expect -- people stop talking about what they are doing, making the job of sorting out potential threats all that much harder.  I recall giving a talk in DC in 2003 or so wherein I made this point to a room full of intelligence types (domestic and foreign), and only about half of them -- predominantly the younger ones -- understood that information was their only tool in this game.  The notion that you could effectively produce safety through prohibiting garage biology and related efforts is the height of folly.  See, for example, "And the Innovation Continues...Starting with Shake andBake Meth!" for the latest on the effectiveness of domestic prohibition of methamphetamine production.  The effect is -- surprise!!! -- more innovation.  Just like it always is.  However much garage biology we wind up with, we will be much safer if practitioners are willing to discuss what they are up to without worrying about misdirected badges, search warrants, and guns. 

To be sure, I don't have reason to suspect anything but good intentions and productive work originating from the garage lab shown above.  Nor is a drug screening project likely to result in something scary.  But I certainly can't know they won't make a mistake.  I would feel more comfortable if they, in turn, didn't feel like they had to keep a low profile so that there could be open discussion of potential missteps.  This applies to individuals and governments alike: "Above all else, let us insist that this work happens in the light, subject to the scrutiny of all who choose to examine it." (PDF)  And I am waaay more concerned about what the government might get up to behind closed doors than I am about activities of individuals.  

Next week I am headed to DC for another biosecurity/bioterrorism discussion, which will be interesting in light of the recent "F" grade given to US biopreparedness by the President's Commission on the Prevention of Weapons of Mass Destruction Proliferation and Terrorism.  See also my earlier analysis of the report.  I mention this here because the US Government still doesn't get the role of garage biology in much needed innovation (see the slides above from the talk to the CA Assembly Committee for a list of important technical advances from small businesses and individuals -- this discussion is also in the book).  Nor has the US Government clued into the PR job they have ahead of them with students who are gaining skills and who want to practice them in the garage.  Both the FBI and the Biological Weapons Commission Convention (sorry, Piers!) had a presence at iGEM in 2009 -- as liasons to students the FBI sent Agents whose cards read "Weapons of Mass Destruction Coordinator".  !!!Calling Chiat\Day!!!

There continues to be a prominent thread of conversation in Washington DC that "biohacking" is somehow aberrant and strange.  But apparently DIYBio, you'll be happy to hear, is a group composed of the Good Guys.  Everyone should feel happy and safe, I guess.  Or maybe not so much, but not for the reasons you might think.

The creation of a false dichotomy between "DIY Biotech" (good guys) and "Biohacking" (bad guys) lends unfortunate credence to the notion that there is an easily identifiable group of well-meaning souls who embrace openness and who are eager to work with the government.  On the contrary, in my experience there are a number of people who are actively hacking biology in their garages who intentionally keep a low profile (I am not certain how many and know of no existing measure, but see discussion above).  This tally included me until a little over a year ago, though now my garage houses a boat under restoration.  These people often consider themselves "hackers", in the same vein as people who hack computers, boats (!), cars, and their own houses.  Yes, it is all hacking, or Making, or whatever you want to call it, and not only is it generally innocuous but it is also the core of technological innovation that drives our economy.  And without direct interaction, I do not believe it is practical to ascribe motivation or intent to an individual - including and especially an incorporated individual - operating in a garage.  Thus, I strongly object to the establishment of a conversation related to biosecurity in which the term "biohacker" has any pejorative connotations precisely because it perpetuates the misconception that i) this group is quantifiable; ii) that the group has any unified motivations or identifiable ethical norms (or anti-norms); iii) that it can realistically be currently addressed (or assessed) as a "group".

Hmm...with that, I have run out of steam for the moment, and have real work to do.  More later.