Are These The Drones We're Looking For? (Part IV)

(Part 1, Drones for Destruction, Construction, and DistributionPart II, Pirate Hunting in the CloudsPart III, Photos, Bullets, and SmugglingPart IV, The Coming War Overhead)

The Coming War Overhead

Are you ready for drone dogfights?  How about combat flocks and swarms?  They are coming.  And they will be over your head before you know it.

From my office window I am fortunate to often see eagles and hawks in flight over Seattle's Lake Union. These raptors are regularly harassed by smaller birds attempting to run off potential predators or competitors.  Each species - whether predator and prey - clearly employs different tactics based on size, speed, armaments, number of combatants, etc.  Within a few years this aerial combat will become a frequent sight in the U.S., but rather than raptors, crows, and gulls, the combatants will be drones of all shapes and sizes.  I am not at all sure that we are adequately prepared, or whether we are adequately planning, for the strange world ahead.

This battle will be engaged on many different fronts. Left, right, black hat, white hat, criminal, law enforcement: all will have the same tools at their disposal. Even if federal, state, and local agencies have early access to hand-me down technologies developed for military applications, they will be up against a large number of innovators, many of whom come from open-source, hacker communities where innovation runs faster than anywhere else.

I have outlined the playing field (Quidditch pitch?) in prior installments. The capability to produce and hack drones is already widely distributed. Drones can now cooperate in swarms to build structures, play music, and play catch. Economic incentives - as well as the cool factor - strongly favor the development of ever less expensive and ever more capable drones to be used for photography, shipping, data storage, and communications, just to name a few applications. As drones and the services they provide become more valuable, and as they inevitably become useful for supplying illicit products such as drugs and pirated music and movies, attempts at regulating drone use are likely to increase demand. This is the very definition of 'perverse incentives'. Yet with the capability to produce drones already so democratized, the only way to limit their use is likely to be direct force. And thus the combat capabilities of even simple drones will, like printing, file-sharing, and every market for every illicit drug, become an arena of continual technological oneupmanship. Drone enthusiasts who work on national security issues have already started a "Drone Smackdown" tourney to explore tactics in their spare time.

So it isn't at all hard to imagine that somewhere down this road we will see a mashup of cheap drones and the sort of Shanzai warfare recently seen in Libya, and now in Syria, in which irregular forces hack together their own knock-off versions of much more expensive (and much more capable) weapons systems they have probably only seen on the Internet. But those DIY weapons systems seem to have done the job. So, too, will Shanzai combat drones.

Here is what we can look forward to: projectiles, nets, lasers or LEDs to blind cameras, strings dropped or shot onto rotors, aerosol cans turned into flying flamethrowers, salt water spray, chaff to disrupt near-field or optical communications, and simple electronic jamming. And each offensive mode will breed countermeasures. The fruits of idle and motivated minds will germinate. Almost any cheap drone will probably have a spare servo circuit or two to control on-board munitions. Adding capacity will be trivial. Remember: many drones are already flying smart phones, so whatever the mission, there's an app for that (see Pt I).

There will be casualties in these confrontations.  The drones, certainly, will suffer.  But sometimes the countermeasures will miss, causing damage to whatever and whomever is downrange.  And when drones are successfully destroyed, they will fall down.  Onto things.  And onto people.  Such as when a Sheriff's Department in Texas dropped a big drone onto it's own SWAT team. Fortunately, the team was sheltered inside their armored car; we should all be so lucky.

In short, the drivers for an arms race are multifold: potential invasion of privacy by government or commercial drones (see Pt. III), attack and defense of file sharing swarms, attacks on (or hijacking of) and defense of cargo drones.  As costs fall, and capabilities improve, novel applications will emerge that will in turn drive ever more innovation in drone weapons systems, especially in countermeasures.

Regardless of what the rules are, of what the FAA and other authorities decide to allow, the economic incentives to employ drones as I have described above will drive behavior. There are just no two ways about it. We will be seeing some version of the world I have described in this series of posts. Consequently, any regulatory should facilitate the safe use of drones rather than attempt to constrain their use. What troubles me, and what motivated me to explore this topic, is that ongoing discussions of drone regulations will completely miss both the economic drivers and the technological ferment making it all possible. I'd like to be wrong about that, but history is likely to be an excellent guide. In the case of drones, as in every other attempt to regulate a democratized technology that serves a large and growing market, black markets will emerge. Nefarious applications of drones are inevitable, and poorly conceived regulation will be an accelerant that makes the problem worse. This is not an argument that all regulation is bad, merely an argument that regulation will be as poorly considered and poorly applied to drones as it was in all the other technological cases I have studied.

Finally, we must remember, first and foremost, that humans will continue to be the targets of armed drones wherever they fly. And, like the raptors that inspired me to think about drone combat, U.S. innovations in arming drones will come home to roost. That is the world we should be preparing for; have no illusions otherwise.

(Part 1, Drones for Destruction, Construction, and DistributionPart II, Pirate Hunting in the CloudsPart III, Photos, Bullets, and SmugglingPart IV, The Coming War Overhead)

Are These The Drones We're Looking For? (Part III)

(Part 1, Drones for Destruction, Construction, and DistributionPart II, Pirate Hunting in the CloudsPart III, Photos, Bullets, and SmugglingPart IV, The Coming War Overhead)

Photos, Bullets, and Smuggling

Unmanned aerial photography drones look to be the next big thing. They also look to be highly annoying and invasive. Earlier this year, the New York Times described a Los Angeles drone operator who had already been approached by paparazzi to take photos of celebrities.  Until regulatory issues got in the way, his previous job was in aerial real-estate photography, where there is also big demand. The Times article describes how the FAA must decide on rules for commercial drone use in aerial photography, among many other applications, by 2015. But it is the paparazzi gig that should get you thinking.

The reason the paparazzi take photos of famous people is money.  Famous people have money, and notoriety, and other people for some reason pay to peek in their windows and, frankly, up their skirts.  What is going to happen when paparazzi start to use drones?  Let's call these robots dronarazzi. (According to Wikipedia, the word paparazzi comes from Fellini's La Dolce Vita and is meant to suggest an annoying, buzzing, insect.  My neologism may be superfluous given the racket current drones make, but it seems important to distinguish between humans and drones, don't you think?)  Very quickly after dronarazzi appear, famous people will attempt to use their money to get laws passed against them. Those laws will turn out to be unenforceable due to the profusion of hardware so cheap that it is disposable.  Famous, wealthy people will then spend some of their money to physically remove the annoyance of the dronarazzi.  And there it begins: drone countermeasures.

Drones have already been the subject of armed confrontation within U.S. borders.  Recently, hunters in Texas unhappy about a surveillance drone flown by animal rights activists proceeded to pretend it was a game bird.  The shoot-down was likely illegal; undoubtedly lawsuits are afoot.  As more drones take to the sky, there will certainly be more such confrontations.  Surveillance drones flown by law enforcement agencies, the DEA, and U.S. Customs will certainly be targets.  Even before law enforcement agencies find themselves involved in daily skirmishes we will see countermeasures innovations crop up in -- no surprise here -- California.  Hollywood, to be specific. I would expect the first dronarazzi shoot-downs to happen fairly soon, even before the FAA sorts out the relevant regulations. And given how frequently paparazzi crash their cars into each other, their subjects, and bystanders, we can expect dronarazzi to cause analogous physical damage.

But look ahead just a bit, beyond photography, to a time when drones are providing real-time traffic or crowd monitoring, perhaps combined with face recognition, which you, the surveilled, may not want to allow.  What will the market look like for gizmos that prevent airborne cameras from imaging your face?  Or what about when small, VTOL drones are actually moving stuff around in the real world.  That stuff could conceivably be your latest, packet-switched delivery from Amazon, or it could be the latest methamphetamine delivery from your drug dealer; it will be hard to tell the difference without physical inspection.  Law enforcement will want to track -- and almost certainly to inspect -- those cargoes, and many a sender and recipient will want to thwart both tracking and inspection.

The rules for drone flight set by the FAA will probably attempt to spell out specific allowed uses.  This decision will be informed both by 9/11 and by recent U.S. combat experience. We might see the definition of specific drone flight corridors, or specific drone flight characteristics, and federal, state, and local authorities may demand the ability to override the controls on drones through back doors in software.  But those back doors will be vulnerable to misuse, and are likely to be nailed shut even by above-board drone operators.  Who wants to loose control of a drone to the hacker kid next door? And, obviously, the economic incentive to cheat in the face of any drone flight or construction regulations will be absolutely enormous.  Many people will make the calculation (probably correctly) that, in the unlikely event that a suspect drone itself is caught or disabled, the operator will walk away scot-free because it simply may not be possible to identify her.  Yet I suspect that whatever the rules forwarded by the FAA, and whatever powers of intervention in drone activity are given to law enforcement, that it will all come down to whether people can be physically prevented from doing what they want with drones.  That is, can drone flight rules actually be enforced without the hands-on ability to capture or shut down scofflaw drones and operators?  The answer, very likely, is no, especially given the existing community of drone hackers who are proficient at producing both hardware and software. This brings us back to the proliferation of physical and electronic countermeasures.  And I question whether we are adequately planning for the future.

(Part 1, Drones for Destruction, Construction, and DistributionPart II, Pirate Hunting in the CloudsPart III, Photos, Bullets, and SmugglingPart IV, The Coming War Overhead)

Are These The Drones We're Looking For? (Part I)

Drones for Destruction, Construction, and Distribution

Drones, it seems, are everywhere. The news is full of the rapidly expanding use of drones in combat.   The U.S. government uses drones daily to gather intelligence and to kill people.   Other organizations, ranging from organized militaries in China, Israel, and Iran to militias like Hezbollah, aspire to possess similar capabilities.  Amateurs are in the thick of it, too; if a recent online video is to be believed, a few months of effort is all that is necessary to develop a DIY drone capable of deploying DIY antipersonnel ordinance.

Lest we think drones are only used to create mayhem, they are used to create beauty.  Last year's lovely art project Flight Assembled Architecture employed a centrally-controlled swarm of small drones to build a complex, curving tower 6 meters tall.  Operating in a highly controlled environment, fully outfitted with navigational aides, each drone had to position itself precisely in six degrees of freedom (three in space, and three in rotation) in order to place each building block.  As our urban areas become sensor-rich environments, drones will soon have these remarkable navigational capabilities just about anywhere people live at high densities, namely urban environments.

To understand the future capabilities of drones, you need merely think of them as flying smartphones running apps.  That's not a great leap, because smartphones are already used as the brains for some drones.  The availability of standard iPhones and Android phones has enabled a thriving market of third-party apps that provide ever new capabilities to the user.  Drone platforms will benefit from analogous app development.  Moreover, as hardware improves, so will the capabilities of apps.  For example, Broadcom recently announced a new chip that enables the integration of multiple kinds of signals -- GPS, magnetometer, altimeter, wi-fi, cell phone tower, gyroscopes, etc. -- and that "promises to indicate location ultra-precisely, possibly within a few centimeters, vertically and horizontally, indoors and out."  The advertised application of that chip is for cell phones, but you can be sure the chips will find their way into drones, if only via cell phones, and will then quickly be utilized by guidance apps.  Whatever the drone mission may be, there will be an app for that.

When those individual, sensor-laden drones can cooperate, things get even more interesting.   Vijay Kumar's recent TED talk has must-see video of coordinated swarms of quad-rotor drones.  The drones, built at the GRASP Lab at the University of Pennsylvania, fly in formation, map outdoor and indoor environments, and as an ensemble play music on oversized instruments (see Double-O-Drone).  As you watch the videos, pay close attention to how well the drones understand their own position and speed, and how that information improves their flight capabilities.  When equipped with GPS and other sorts of sensors, drones are clearly capable of not just finding their way around complex environments but also of manipulating those environments.  At the moment, the drones' brains are actually in a stationary computer, with both sensory data and flight instructions wirelessly broadcast to and fro.  Moore's Law guarantees that those brains - including derivatives of the aforementioned Broadcom chip - will soon reside on the drones, thereby enabling real-time, local control, which will be necessary for autonomous operations at any real distance from home base.  The drones will become birds.  But these birds will have vertical take-off and landing (VTOL) capabilities, substantial load-carrying capacity, and will be able to work together towards ends set by humans.

A company called Matternet is already planning to exploit these capabilities.  The company's initial business model involves transporting goods in developing countries that lack adequate infrastructure.  If this strategy is successful, and if it can be scaled up, it will negate the need to build much of the fixed infrastructure that exists in the developed world.  It is a 21st century version of the Pony Express: think packet-switching, which makes the internet work efficiently, but for atoms rather than for bits.

Matternet plans that the first goods moved this way will be small, high value, perishables like pharmaceuticals.  But cargo size needn't be limited.  As Vijay Kumar pointed out in his TED talk, drones can cooperate to lift and transport larger objects.  While undoubtedly power or fuel will constrain some of these plans until technology catches up to aspirations, drones will inevitably be used to move larger and larger objects over longer and longer distances.  The technology will also be used very soon in the U.S.  The FAA has been directed to come up with rules for commercial drone use by 2015, and must sort out how to enable emergency agencies to use drones in 2012.  There are already 61 organizations in the U.S. with permission to fly drones in civilian airspace.  Yet rather less thought has been given to drone use outside the rules.  We are planning for drones, after a fashion, but what about after they arrive?

(Part 1, Drones for Destruction, Construction, and DistributionPart II, Pirate Hunting in the CloudsPart III, Photos, Bullets, and SmugglingPart IV, The Coming War Overhead)